FANDOM


Datei:Papier an cd.jpg
Datei:Lightning over Oradea Romania 2.jpg

Die Elektrostatik befasst sich mit ruhenden elektrischen Ladungen, Ladungsverteilungen und den elektrischen Feldern geladener Körper.

Schon im Altertum war bekannt, dass bestimmte Materialien nach dem Reiben kleine leichte Teilchen, z. B. Papierschnipsel, anziehen (Reibungselektrizität). Das griechische Wort „elektron“ für Bernstein, bei dem dieses Phänomen gut zu sehen ist, ist der Namensgeber für viele Bereiche der Naturwissenschaften.

Die Phänomene der Elektrostatik rühren von den Kräften her, die elektrische Ladungen aufeinander ausüben. Diese Kräfte werden vom Coulombschen Gesetz beschrieben. Auch wenn die im obigen Beispiel, geriebener Bernstein und Papierschnipsel, beschriebenen Kräfte klein erscheinen, ist die elektrische Kraft z. B. im Vergleich zur Gravitationskraft außerordentlich stark. So ist die elektrische Kraft zwischen einem Elektron und einem Proton (beide bilden zusammen ein Wasserstoffatom) um ungefähr 40 Größenordnungen größer als ihre gegenseitige Anziehung aufgrund der Gravitationskraft.

Die Elektrostatik ist ein Teilgebiet der Elektrodynamik, die diese um die Wechselwirkungen auch bewegter Ladungen (elektrischer Strom) und magnetischer Felder sowie deren dynamischer (zeitlicher) Entwicklung erweitert. Die Elektrostatik findet ihr Analogon in der Magnetostatik, die sich mit stationären (zeitlich konstanten) Strömen und Magnetfeldern befasst.

Übersicht Bearbeiten

Die von einer gegebenen Ladung Q auf ein Objekt ausgeübte Kraft ist proportional zur Ladung q des Objektes. Sie lässt sich also durch die Gleichung F=q · E beschreiben. Diese Gleichung definiert das von Q begleitete elektrische Feld E.

Von einem äußeren elektrischen Feld werden in elektrischen Leitern und Isolatoren unterschiedliche Effekte hervorgerufen. Die freien elektrischen Ladungen in Leitern, z. B. die Leitungselektronen der Metalle, verschieben sich makroskopisch solcherart, dass das elektrische Feld im gesamten Inneren des Leiters verschwindet (siehe Faradayscher Käfig). Dieses Phänomen wird Influenz genannt. Andererseits reagieren die lokal gebundenen Ladungen in einem Isolator, also die Elektronen und Kerne der Atome, durch eine gegenseitige Verschiebung, wodurch der Isolator polarisiert wird.

Das von einem elektrischen Feld E auf eine Probe q induzierte Kraftfeld F ist konservativ, das heißt die potentielle Energie W der Probe im elektrischen Feld ist nur abhängig von der Position x der Probe, nicht aber vom Weg, auf dem die Probe nach x bewegt wurde. Das bedeutet auch, dass sich das elektrische Feld als Gradient eines elektrostatischen Potentials φ darstellen lässt. Die potentielle Energie einer Probe im Potential ist also W=q · φ. Der Differenz zweier elektrischer Potentiale entspricht die elektrische Spannung. Das Verschwinden des elektrischen Feldes, E=0, ist gleichbedeutend mit einem konstanten elektrischen Potential, φ=const.

Das Feld, und damit auch das Potential, einer beliebigen Ladungsverteilung in einem homogenen Isolator lässt sich leicht anhand der aus dem Coulombschen Gesetz abgeleiteten Gesetzmäßigkeiten berechnen. (Das Feld in einem Leiter verschwindet.) Eine solche Berechnung ist bei räumlichen Anordnungen von Leitern, Nichtleitern und Ladungen nur in wenigen Fällen einfach.

Das elektrische Feld Bearbeiten

Datei:Elektrostatik-efeld.png
Datei:Feld einer geladenen Ebene.png

Für den elektrostatischen Spezialfall stationärer magnetischer Felder (d B/d t = 0) und verschwindender elektrischer Ströme (J = 0) folgt aus dem Coulombschen Gesetz und der Definition des elektrischen Feldes E=F/q für das von einer Punktladung Q am Ort x′ erregte elektrische Feld E am Ort x

\vec{E}(\vec{x}) = k Q\frac{\vec x-\vec{x'}}{\left\|\vec{x}-\vec{x'}\right\|^3}

Das elektrische Feld ist ein gerichtetes Vektorfeld. Für eine positive Ladung ist es genau von der Ladung weg, für eine negative Ladung zur Ladung hin gerichtet, was gleichbedeutend ist mit der Abstoßung gleichnamiger und der Anziehung entgegengesetzter Ladungen. Seine Stärke ist proportional zur Stärke der Ladung Q und umgekehrt proportional zum Quadrat des Abstands von Q. Der Proportionalitätsfaktor k ist die Naturkonstante k = 1/(4 \pi \epsilon_0) im SI-Einheitensystem und k = 1 im gaußschen-Einheitensystem. Siehe Dielektrizitätskonstante.

Das Maß der elektrischen Feldstärke in SI-Einheiten ist

[E]_{\mathrm{SI}}=\frac{\mathrm{V}}{\mathrm{m}}
=\frac{\mathrm{N}}{\mathrm{C}}
=\frac{\mathrm{kg}\cdot\mathrm{m}}{\mathrm{s}^3\cdot\mathrm{A}}

Das von einer Menge an Ladungen, Qi, erregte Feld ist die Summe der Teilbeiträge (Superpositionsprinzip)

\vec E(\vec x) = k \sum_i {Q_i\frac{\vec x-\vec{x_i}}{\left\|\vec x-\vec{x_i}\right\|^3}}

Oder im Fall einer kontinuierlichen Raumladungsverteilung, ρ, das Integral

\vec E(\vec x) = k \int {\rho(\vec{x'})\frac{\vec x-\vec{x'}}{\left\|\vec x-\vec{x'}\right\|^3}}d^3x'

Das gaußsche Gesetz beschreibt, dass der Fluss des elektrischen Feldes durch eine geschlossene Oberfläche A proportional zur Stärke der von der Oberfläche umschlossenen Ladung Q ist

\int \vec{ E } d\vec{A} \sim Q = \int \rho dV

Der gaußsche Integralsatz verknüpft Fluss und Divergenz eines beliebigen Vektorfelds:

\int \vec{ E } d \vec{A} = \int \nabla \vec{E} dV

woraus folgt, dass die Divergenz des elektrischen Feldes proportional zur Raumladungsdichte ist:

 \nabla \vec{ E } \sim \rho

Das konservative elektrische Feld kann durch den Gradienten eines skalaren elektrischen Potentials φ beschrieben werden

 \vec{ E } = - \nabla \Phi

Woraus die Poisson-Gleichung folgt:

 \rho \sim \nabla \vec{ E } = - \nabla \nabla \Phi = - \triangle \Phi

Potential und Spannung Bearbeiten

Da eine elektrische Ladung im elektrischen Feld eine Kraft erfährt, wird bei ihrer Bewegung durch das elektrische Feld Arbeit verrichtet, bzw. es muss Arbeit verrichtet werden, um die Ladung gegen das elektrische Feld zu bewegen. Da elektrostatische Felder wirbelfrei sind (konservatives Feld), hängt die benötigte Energie nur vom Start- und Zielort ab, nicht vom genauen Weg. "Wirbelfrei" heißt, dass die Rotation eines Feldes Null ist:

\mathrm{rot}\, \vec E = 0 \leftrightarrow \oint \vec E d \vec s = 0

Somit lässt sich eine potentielle Energie der Ladung definieren. Da die Kraft proportional zur Ladung ist, gilt dies auch für die potentielle Energie. Daher kann man die potentielle Energie als Produkt der Ladung und eines Potentials, welches sich aus dem elektrischen Feld ergibt, berechnen.

Die Potentialdifferenz φ zwischen zwei Punkten bezeichnet man als elektrische Spannung. Das Produkt aus der Ladung eines Teilchens und der Spannung zwischen zwei Punkten ergibt die Energie, die man benötigt, um das Teilchen von einem Punkt zum anderen zu bringen. Die Einheit des elektrischen Potentials und der elektrischen Spannung ist Volt. Gemäß der Definition von Potential und Spannung gilt Volt = Joule/Coulomb.

\Phi(\vec x)=\int \vec{E} d \vec s = k Q\frac{1}{\left\|\vec x-\vec{x}\,'\right\|}

Im Fall einer kontinuierlichen Raumladungsverteilung ist das elektrische Potential durch das folgende Integral gegeben:

\Phi(\vec x)= k \int {\frac{\rho(\vec{x}\,')}{\left\|\vec x-\vec{x}\,'\right\|}}d^3x'

Ist es nicht möglich, eine analytische Lösung des Integrals zu finden, so kann man 1/||\vec x-\vec{x}\,'|| in eine Potenzreihe entwickeln, siehe Multipolentwicklung oder bei Legendre-Polynom#Erzeugende Funktion.

Das Konzept der Spannung stößt an seine Grenzen, wenn dynamische Vorgänge auftreten. Für veränderliche Magnetfelder lässt sich zwar noch eine Induktionsspannung definieren, jedoch ist diese nicht mehr über eine Potentialdifferenz definierbar. Auch ist die für eine Bewegung der Ladung von einem Punkt zum anderen benötigte Energie nur so lange gleich der Potentialdifferenz zwischen den Punkten, wie die Beschleunigung vernachlässigbar klein ist, da nach der Elektrodynamik beschleunigte Ladungen elektromagnetische Wellen aussenden, die ebenfalls in der Energiebilanz berücksichtigt werden müssen.

Die Energie des elektrischen Feldes Bearbeiten

In einem Plattenkondensator besteht ein näherungsweise homogenes Feld. Ist die Ladung der einen Platte Q und die der anderen Platte entsprechend -Q, sowie die Plattenfläche A, so hat dieses Feld den Wert

E = \frac{Q}{\varepsilon_0 A}, wobei \varepsilon_0 die Permittivität des Vakuums ist.

Ist der konstante Plattenabstand d, und bringt man eine kleine Ladung \mathrm{d}Q von der einen auf die andere Platte, so muss gegen das elektrische Feld folgende Arbeit verrichtet werden

\mathrm{d}W = \mathrm{d}F\cdot d = E\cdot\mathrm{d}Q\cdot d.

Wegen der Energieerhaltung muss diese Arbeit zu einer Erhöhung der Energie des Kondensators führen. Diese kann aber nur im elektrischen Feld stecken. Durch den Ladungsübertrag erhöht sich die Feldstärke um

\mathrm{d}E = \frac{\mathrm{d}Q}{\varepsilon_0 A}.

Auflösen nach \mathrm{d}Q und Einsetzen in die Arbeit ergibt

\mathrm{d}W = \varepsilon_0\cdot A\cdot d\cdot E \cdot\mathrm{d}E.

Nun ist aber V=A\cdot d gerade das Volumen des elektrischen Feldes. Aufintegrieren und Teilen durch V ergibt die Energiedichte

\frac{W}{V} = \frac{1}{2}\varepsilon_0 E^2.

Im elektrischen Feld eines Kondensators beispielsweise herrscht eine Energiedichte von \varrho_{el} = {W \over V} = {1 \over 2} \cdot {{C \cdot U^{2}} \over {A \cdot d}}

Literatur Bearbeiten

Persönlichkeiten Bearbeiten

Vorkommen, Erzeugung, Anwendung Bearbeiten

Vorkommen der Natur:

Vorkommen im Alltag:

  • ESD (electro-static discharge): elektrostatische Entladung, z.B. nach dem Aufladen durch Laufen über Teppichböden, Benutzen von Kunststoff-Geländern oder Sitzen auf Sesseln mit Kunstfaser-Bezug
  • Elektrostatische Aufladung durch Kämmen mit Plastik-Kamm, Ausziehen eines Kunstfaser-Pullovers

Erzeugung in Forschung, Lehre und Industrie:

Anwendungen:

Messung:

Gefahren Bearbeiten

Zu den mit elektrostatischen Ladungen verbundenen Gefahren siehe u.a. Elektrostatische Entladung (ESD), Gewitter, Blitzschlag, Blitzschutz

Siehe auch Bearbeiten

Weblinks Bearbeiten

Wikibooks-logo Wikibooks: Elektrostatik – Lern- und Lehrmaterialien
Wikibooks-logo Wikibooks: Formelsammlung Elektrostatik – Lern- und Lehrmaterialien

bg:Електростатика ca:Electrostàticaeo:Elektrostatikofi:Sähköstatiikkaid:Elektrostatik it:Elettrostatica lt:Elektrostatika nl:Elektrostatica pl:Elektrostatyka pt:Eletrostática ro:Electrostaticăsl:Elektrostatika sv:Elektrostatik uk:Електростатика

Störung durch Adblocker erkannt!


Wikia ist eine gebührenfreie Seite, die sich durch Werbung finanziert. Benutzer, die Adblocker einsetzen, haben eine modifizierte Ansicht der Seite.

Wikia ist nicht verfügbar, wenn du weitere Modifikationen in dem Adblocker-Programm gemacht hast. Wenn du sie entfernst, dann wird die Seite ohne Probleme geladen.